KAIST

DLGAIResearch

Summary

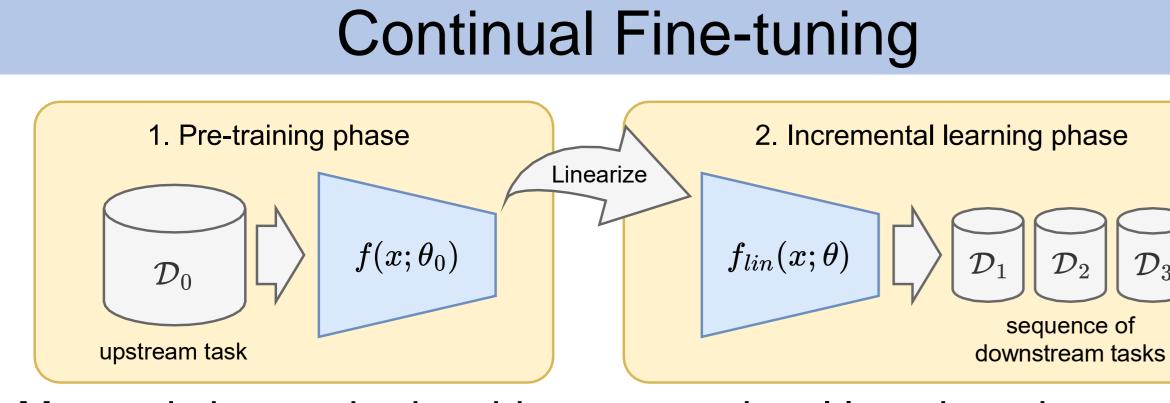
- We address Continual Fine-tuning, an alternative CL framework that leverages pre-trained representation. - We propose a simple method that significantly boosts the performance of parameter regularization based on network linearization and MSE loss.

- Our method flexibly applies to various incremental learning settings.

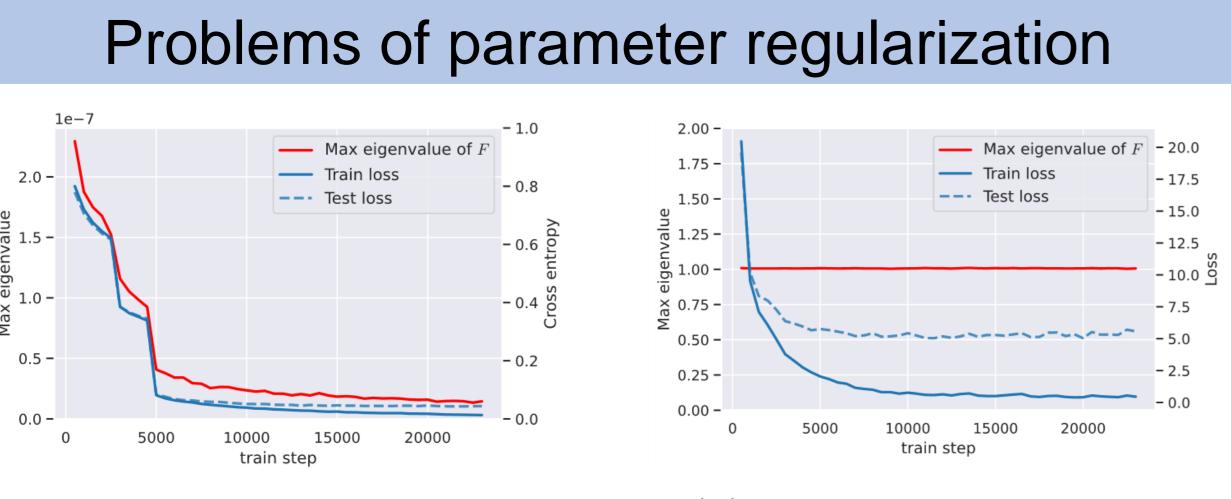
Background on Continual Learning

- Goal: to learn a model incrementally through a set of sequentially arriving batches of data/tasks/classes. - Parameter regularization methods approximate the previous task objectives using second-order Taylor approximation.

 $\frac{1}{t} \sum_{i=1}^{t} \mathbb{E}_{(x,y)\in\mathcal{D}_i} \left[\lambda_i \mathcal{L}(f(x;\theta,i),y)\right] = C + \frac{1}{2} (\theta - \theta_t)^\top A(\theta - \theta_t) + \mathcal{O}(\theta^3)$



Most existing methods addresses continual learning where a model is trained from scratch. Here, we explore continually fine-tuning a pre-trained model.



(a) Curvature of SCE loss

(b) Curvature of MSE loss

1. Vanishing curvature problem

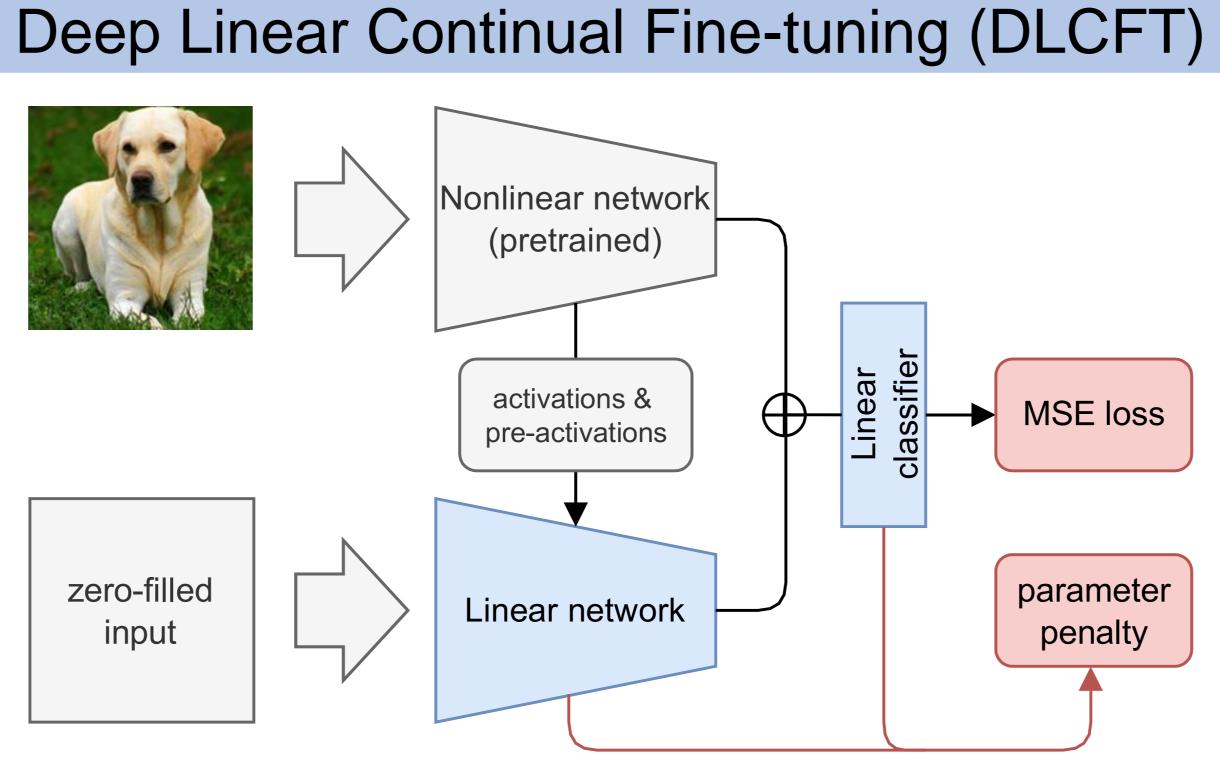
Second derivatives of the softmax cross-entropy loss converges to zero as the model fits the data.

2. Higher-order error

Quadratic approximation assumes that the loss is a quadratic function of the parameters, which can lead to large error as the model learns more data.

DLCFT: Deep Linear Continual Fine-Tuning for General Incremental Learning

Hyounguk Shon¹, Janghyeon Lee², Seung Hwan Kim², Junmo Kim¹



1. To address the vanishing curvature problem, we replace softmax cross-entropy loss for MSE loss. The labels are converted into scaled one-hot vectors.

 $\ell(f(x;\theta,t),y) = \frac{1}{2} ||\alpha\phi(y) - f(x;\theta,t)||^2$

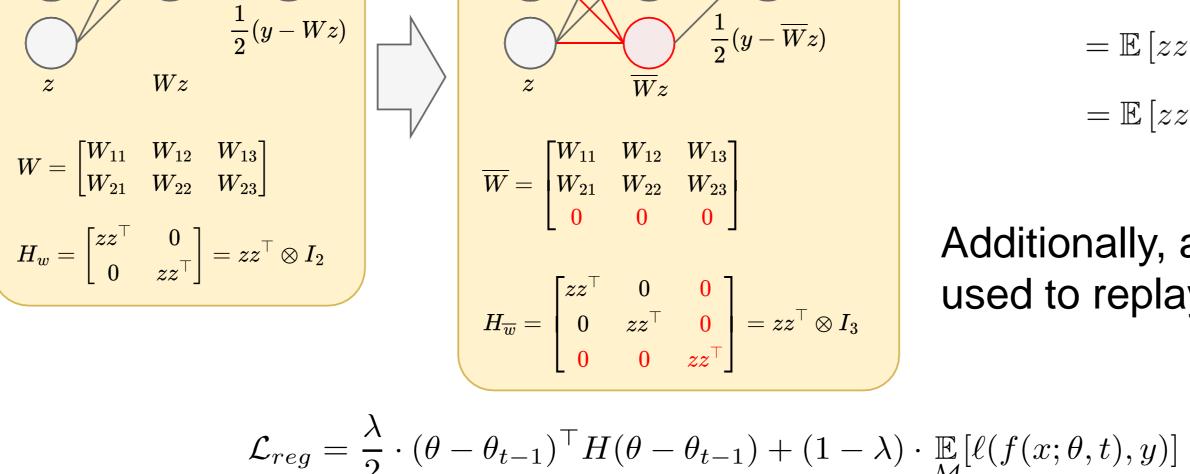
2. To address the higher-order error problem, we use linear approximation of the neural network to linearize the model.

 $f(x;\theta,t) = w_t \cdot g_{lin}(x;\psi) + b_t,$

Here, quadratic parameter regularization is the optimal continual learning policy

$$\mathcal{L}_{data} = \underset{(x,y)\sim\mathcal{D}_{t}}{\mathbb{E}} \left[\ell(f(x;\theta,t),y) \right]$$
$$\ell(f(x;\theta,t),y) = \frac{1}{2} ||\alpha\phi(y) - f(x;\theta,t)||^{2}$$
$$\mathcal{L}_{reg} = \frac{1}{2} (\theta - \theta_{t-1})^{\top} H(\theta - \theta_{t-1})^{T} H(\theta - \theta_{t-1})^$$

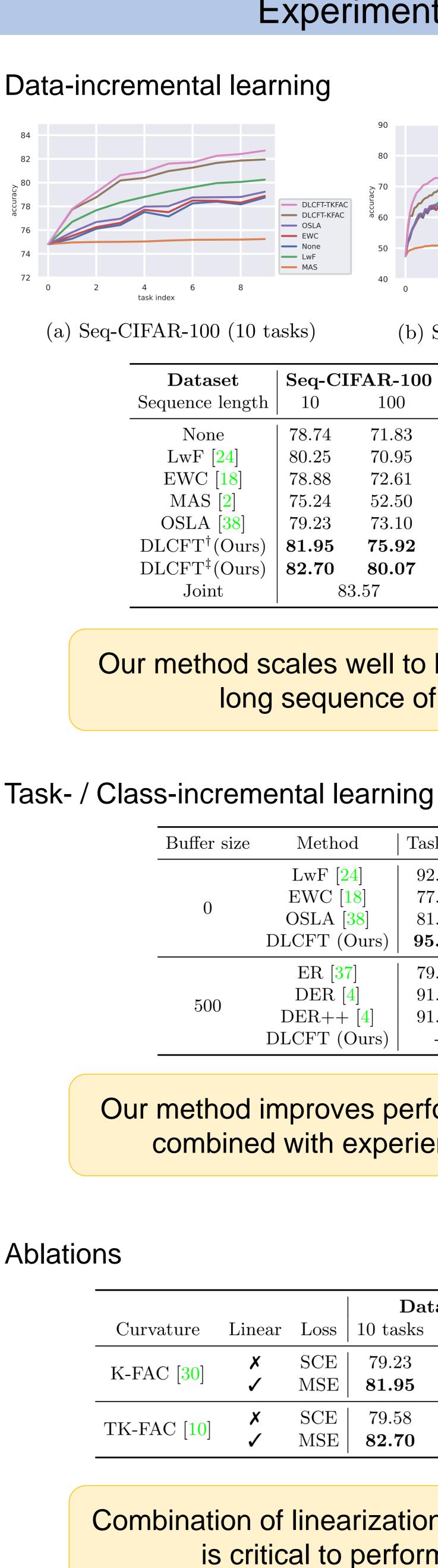
Classifier regularization for class-IL problem

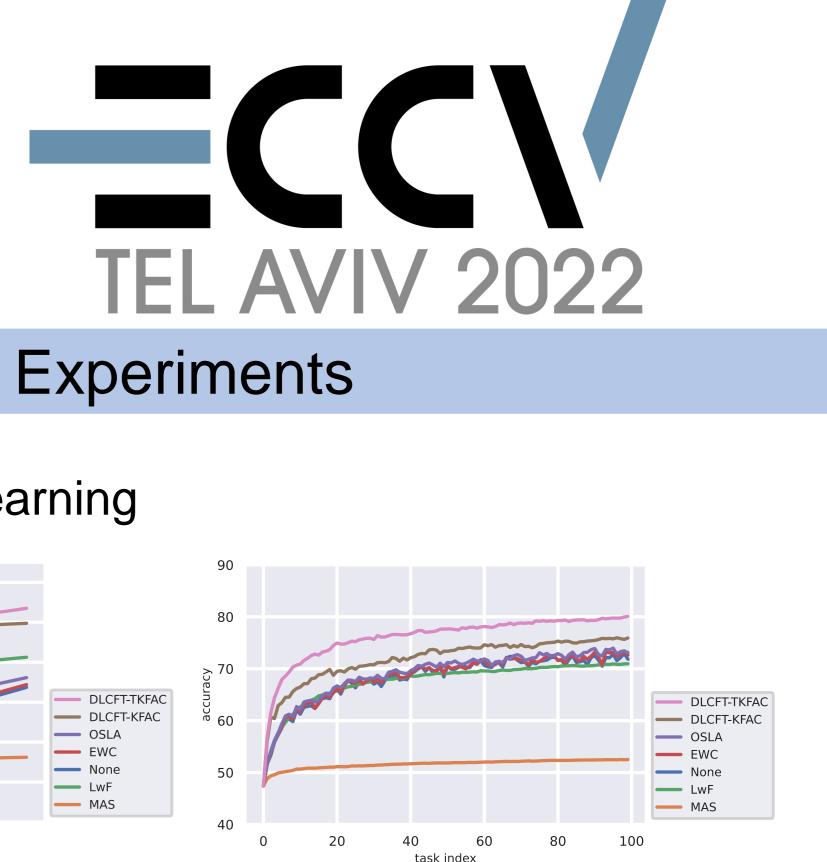


We can obtain the curvature for the unseen weights without requiring the previous task data.

$$\begin{aligned} \frac{\partial^2 \mathcal{L}}{\partial \overline{w} \partial \overline{w}^{\top}} &= \frac{\partial}{\partial \overline{w}} \mathbb{E}[(y - \overline{W}z)z^{\top}] \\ &= \mathbb{E}\left[zz^{\top} \otimes I\right] \\ &= \mathbb{E}\left[zz^{\top}\right] \otimes I. \end{aligned}$$

Additionally, a small buffer is used to replay examples.





(b) Seq-CIFAR-100 (100 tasks)

\mathbf{h}	$\begin{vmatrix} \mathbf{Seq-CI} \\ 10 \end{vmatrix}$	FAR-100 100	Seq-MIT-67
JII		100	
	78.74	71.83	63.48
	80.25	70.95	67.21
	78.88	72.61	63.68
	75.24	52.50	62.49
	79.23	73.10	64.08
5)	81.95	75.92	70.55
5)	82.70	80.07	70.52
	83.57		74.40

Our method scales well to learning a very long sequence of data

Method	Task-IL	Class-IL
LwF $[24]$	92.16	-
EWC [18]	77.44	-
OSLA $[38]$	81.03	-
DLCFT (Ours)	95.79	-
ER [37]	79.14	43.52
DER [4]	91.47	58.07
DER++[4]	91.56	53.29
DLCFT (Ours)		59.98

Our method improves performance when combined with experience replay

		Data-IL		Class-IL
ear	Loss	10 tasks	100 tasks	10 tasks
(SCE	79.23	73.51	44.93
/	MSE	81.95	75.92	59.86
(SCE	79.58	73.18	44.66
	MSE	82.70	80.07	59.98

Combination of linearization and MSE loss is critical to performance.